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INTRODUCTION

Dental caries is a multifactorial disease process caused by a microbial imbalance in the oral biofilm, 
provoked by frequent exposure to fermentable carbohydrates, resulting in the demineralization 
of dental hard tissues.[1,2] The primary etiological agents involved in the initiation of caries are 
Streptococcus mutans, Actinomyces spp., and non-S. mutans streptococci. Other species that 
play a crucial role in caries production are species of Veillonella, Lactobacillus, Bifidobacterium, 
Propionibacterium, low-pH non-S. mutans streptococci, Actinomyces, and Atopobium.[3]

Treatment for dental caries involves both conservative and preventive approaches which aim 
for specific person-to-person risk assessment by early detection of the disease and efforts are 
made to reverse or arrest dental caries, preserving tooth structure.[2,4] A large number of patients 
are still affected by caries despite the efforts and advancements in caries management. The ideal 
goal of any intervention/treatment would be the prevention of tooth decay. Changing the local 
conditions at the sites at risk proves a challenge in caries prevention.[5] Calcium and phosphate 
ions can reduce tooth demineralization, thus preventing dental caries. The salivary concentration 
of these ions will determine whether remineralization or demineralization will occur.[6]

Fluoride is the most commonly used remineralizing agent in the prevention of dental caries in 
the early stages.[6] Fluoride can react with hydroxyapatite forming fluorapatite or fluoridated 
hydroxyapatite.[6,7] These remineralizing agents are supplied either in liquid or semisolid forms, 
which can be easily administered and have good patient acceptability. The main disadvantage/
hurdle is poor retention in the oral environment, resulting in suboptimal therapeutic 
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concentration and outcome.[8] The most common delivery 
systems for agents against dental caries are toothpaste, gels, 
tablets, and mouth rinses.[9]

Recent literature states that nanotechnology can aid in the 
prevention and management of dental caries by controlling 
plaque and helping in remineralization of initial caries.[10,11] 
This branch of engineering uses molecular machines with 
precise structures that are less than or equal to 0.1 µm in size. 
The word nano denotes 10–9 or 1 billionth. A nanoparticle is 
almost 1000 times smaller compared to micro and it measures 
1/80,000 of the diameter of a human hair.[12,13] Nanoparticle-
based aqueous suspensions are incorporated in a gel or paste 
form and used for oral applications.[14] Nanoparticles are 
preferred in biology and material science because of their 
unique properties such as uniformity, conductance, and 
specialized optical properties.[15]

Antimicrobial nanoparticles could inhibit bacterial 
growth and thus dental caries.[16,17] Nanoparticles that 
penetrate biofilms (plaque) and damage the extracellular 
polysaccharide matrix can enhance antibacterial efficacy and 
reduce the initiation of drug or antimicrobial resistance.[18]

Nanotechnology helps in treating dental caries by 
two important approaches. The first approach is the 
remineralization process, which uses nano-materials 
with fluoride and calcium releasing ability, namely, 
calcium phosphate, calcium fluoride, hydroxyapatite, and 
fluorohydroxyapatite. The second approach involves the 
administration of antibacterial nanoparticles such as silver, 
quaternary ammonium polyethylene amine, and zinc 
oxide.[19,20] Better outcomes are achieved by the combination 
of these two approaches. This review will give an insight into 
applications of nanotechnology in the prevention of early 
carious lesions and its role in remineralization.

PROPERTIES AND CLASSIFICATION OF 
NANOPARTICLES

General properties

Nanosized systems have distinctive properties due to 
their increased surface-to-volume ratio and increased 
bioavailability toward cells and tissues.[21,22] Improved 
surface area results in the better mechanical interlocking of 
nanoparticles to the resin matrix.[23] Superior mechanical 
properties are achieved by the addition of inorganic ceramic 
nanoparticles which are brittle and hard.[4] There is improved 
resistance to crack propagation and higher fatigue strength 
due to the reduction in areas of stress concentration.[24] 
Optical properties such as surface finish and translucency 
are improved when nanosized fillers are used in restorative 
materials.[25] Furthermore, there is better control of 
biodegradability and biodegradation rates in comparison 

to conventional composite materials.[26,27] The nanoparticles 
are classified as antimicrobial, remineralizing, and anti-
inflammatory agents [Figure 1].

Anti-microbial and anti-inflammatory properties

The main etiological factor of dental caries is the presence of 
pathogenic bacteria that are organized within an extracellular 
matrix forming a biofilm.[28] The bacteria in biofilm are 
more resistant to antimicrobial treatment than planktonic 
organisms.[29,30] The nanoparticles have more effective antibacterial 
activity as the dimensions are reduced to the nanometer, resulting 
in an increased surface-to-volume ratio that allows them to 
interact and penetrate bacteria effectively.[31] Nanoparticles in 
caries prevention are classified based on their mechanism of 
action as mentioned in [Figure 1].[32] 

SILVER NANOPARTICLES

Silver nanoparticles (Ag NPs) have been used for caries 
prevention in several studies.[33-44] These studies utilized 
silver nanoparticles in the form of silver nanocomposites, 
dentifrices, coated orthodontic brackets, nanosilver fluoride 
solutions, sealants, and glass ionomer cement with Ag NPs. 
In vitro research using Ag NPs and silver nanocomposites 
was done to treat and prevent secondary caries.[35,36] Ag NPs 
were also incorporated into the resin of orthodontic materials 
(adhesives, elastomeric ligatures, and removable retainers) 
for caries prevention.[37,38] Nanosilver fluoride solution was 
effective in remineralizing early enamel caries and arresting 
dentinal caries.[39-43] Clinical studies have proved that Ag 
NPs on orthodontic brackets can be used to prevent enamel 
caries[37] and that dental sealant with Ag NPs can be better 
than a traditional sealant in the prevention of enamel caries 
in first permanent molars.[44]

Figure 1: Classification of nanoparticles in caries prevention based 
on action.



Tejaswi, et al.: Nanoparticles in caries prevention

Journal of Global Oral Health • Volume 4 • Issue 1 • January-June 2021  |  58

Antimicrobial activity

In vitro experiments

In vitro studies have shown that Ag NPs have an antimicrobial 
effect against Gram-positive bacteria such as Bacillus, 
Enterococcus, Listeria, Staphylococcus, Streptococcus, and 
Gram-negative bacteria such as Acinetobacter, Escherichia, 
Pseudomonas, and Salmonella.[45-48] The size, morphology, 
and concentration of nanoparticles play an important 
role in determining the antibacterial activity of Ag NPs. 
With the decrease in size of Ag NPs, the stability and 
biocompatibility increases. The higher surface-area-to-
volume ratio of the smaller nanoparticles allows them to 
penetrate biological surfaces more readily.[49-51] Ag NPs 
smaller than 30 nm showed strong antimicrobial activity 
against Staphylococcus aureus and Klebsiella pneumoniae. 
Ag NPs with sizes ranging from 5 to 20 nm have strong 
antimicrobial activity against S.  aureus.[52] Thus, small Ag 
NPs are more toxic against bacteria than large particles, 
and this further increased when the nanoparticles were 
oxidized.[53]

Silver ions are also released from materials that penetrate 
through microbial membranes and disrupt deoxyribonucleic 
acid replication and protein synthesis.[54] These ions can also 
deactivate respiratory enzymes and ultimately cause cell lysis. 
Ag NPs can accumulate on the pits of the cell wall and cause 
membrane denaturation.[55]

Ahmed et al. evaluated the action of toothpaste with and 
without Ag NPs against S. mutans[34] and reported that Ag 
NPs had antimicrobial activity against S. mutans. The mean 
diameter of the zone of inhibition was 20.14 ± 0.96 mm for 
toothpaste with Ag NPs, whereas no zone of inhibition was 
observed with the toothpaste without Ag NPs.

Abadi et al. demonstrated the antibacterial efficacy of an 
alcohol-free mouthwash with a low concentration of colloidal 
Ag NPs (0.024–50 µg/ml).[56]

Effects on enamel and dentin

Most studies done on enamel and dentin with Ag NPs were 
in vitro experiments. Ag NPs can reduce the production of 
lactic acid in biofilm and may have the potential to reduce 
the demineralization of teeth.[35] Ag NPs can attach to 
hydroxyapatite crystals in the carious lesion.[41] Furthermore, 
silver ions released from Ag NPs can form insoluble silver 
chloride on dental hard tissue, which increases the mineral 
density of dental hard tissue.[15] Ag NPs can preserve exposed 
collagen in carious teeth by inhibiting and deactivating 
bacterial collagenases as well as proteinases in saliva and the 
dentin matrix, such as activated matrix metalloproteinases 
and cysteine cathepsins.[57] The preserved collagen thus 
acts as a scaffold for the deposition of a mineral crystal. 

Espíndola-Castro et al. suggested that nanosilver fluoride 
particles were capable of staining dentin; however, the same 
laboratory model concluded that brushing cycle removed the 
stain.[58]

Ag NPs in caries prevention

Ag NPs were combined with other nanoparticles, such 
as calcium glycerophosphate and zinc oxide, to produce 
multifunctional nanocomposites for caries prevention.[59] 
Ag NPs were also added into restorative materials, such as 
adhesives and filling resins, which can prevent secondary 
caries without compromising mechanical properties.[36]

Sound enamel treated with Ag NPs had a shallower lesion 
depth compared to enamel treated with water after biofilm 
challenge.[35] Besides, microhardness was increased when 
enamel with artificial caries was treated with Ag NPs.[57,60] The 
microhardness value of enamel caries treated with nanosilver 
fluoride was higher than that of enamel caries treated with 
sodium fluoride.[41]

A clinical trial reported that the mineral loss in first molars 
was reduced when treated with dental sealants containing 
Ag NPs.[44] Nanosilver fluoride also arrested dentin caries of 
children in two clinical trials.[39,42]

Laboratory studies claim that silver nanoparticles restrain 
the growth of cariogenic bacteria. Bacterial collagenase 
activity has been known to be impeded by Ag NPs and they 
also protect the collagen matrix. Therefore, Ag NPs can be 
useful in caries prevention. However, it is essential to prove 
the same with well-designed randomized clinical trials. 
Furthermore, staining caused by Ag Nps should be taken into 
consideration before clinical usage.

GOLD NANOPARTICLES 

In vitro experiments

Gold (Au) is reported to have a weak antimicrobial effect 
against bacteria and fungi.[61-64] A combination of gold 
nanoparticles (Au NPs) with tetracycline or with ampicillin 
can improve the antibacterial activity.[65,66] Au NPs exhibit 
anti-inflammatory action by reducing reactive oxygen 
species (ROS) production by decreasing lipopolysaccharide-
induced cytokine production such as interleukin (IL)-1β, 
IL-17, tumor necrosis factor, and modulating mitogen-
activated protein kinase and phosphatidylinositol 3-kinase 
pathways.[67]

Hernández-Sierra et al. evaluated NPs of Ag, zinc oxide, and 
Au of 25 nm, 80 nm, and 125 nm average sizes. The results 
stated that a higher concentration of Au NPs than that of Ag 
NPs was required to observe bacteriostatic and bactericidal 
effects on S. mutans.[68] Junevičius et al.[69] compared the 
antimicrobial effect of toothpaste containing Ag NPs and 
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Au. Au NPs containing toothpaste had a lower antimicrobial 
effect against Gram-negative bacteria when compared to Ag 
NPs containing toothpaste. The concentration of Au NPs 
required to achieve the desired effect is more compared to 
other nanoparticles. Furthermore, they are reported to have 
a weak antimicrobial effect which makes them less preferable 
compared to other nanoparticles used for caries prevention.

ZINC OXIDE NANOPARTICLES

Antimicrobial activity

In vitro studies

Zinc ions have demonstrated good antibacterial action which 
is elevated when it exists as zinc oxide nanoparticles.[70] 
Yamamoto found that as the particle size decreased, there 
was an increase in the antibacterial activity. This increase was 
assumed to be owed to the added H2O2 generated from the 
surface of ZnO.[71]

Zinc oxide nanoparticles (ZnO NP) have antibacterial 
properties against both Gram-positive and Gram-negative 
bacteria.[72] The generation of hydrogen peroxide (H2O2) 
from the surface of ZnO hinders bacterial growth.[71] The 
liberation of oxygen species on the surface of ZnO can 
significantly damage microorganisms.[73] Zn is effective 
against S. aureus,[74] Porphyromonas gingivalis and 
Actinomyces naeslundii,[73] Escherichia coli,[71] Streptococcus 
sobrinus,[16,75] and S. mutans.[76] Zinc oxide nanoparticles have 
photocatalytic activity and high stability.[77]

ZnO NPs in caries prevention

In vitro experiments

The inclusion of 2–5 wt% of zinc oxide nanoparticles to 
resin composite can provide antibacterial property without 
altering their properties.[78,79] The addition of ZnO and Cu 
nanoparticles in universal adhesive systems may provide 
antimicrobial activity, improve the integrity of the hybrid 
layer,[80] and adhesive mechanical properties.

In vivo experiments

In vivo research with Zn-containing mouth rinse has 
demonstrated high substantivity in the oral cavity which is active 
against S. mutans. The only adverse effect related to the use of 
zinc ions in mouth rinses is their unpleasant astringent taste. 
Zinc has the least tendency to stain oral tissues when compared 
to other active ingredients such as Ag, Sn, or chlorhexidine.[81]

Ag/ZnO nanocomposite showed enhanced antibacterial 
activity against S. mutans. The antibacterial mechanism 
involves the direct destruction of cell structure and 
membrane function, as well as the generation of ROS to 

oxidize biomacromolecules.[76] ZnONPs are effective against 
Gram-positive and Gram-negative bacteria in in vitro 
studies. In vivo studies are necessary to confirm these results. 
Furthermore, when added to composite, it is effective against 
cariogenic bacteria, but their effect on mechanical properties 
of composite needs to be further investigated. If used in 
mouth rinses, their staining property and taste should be 
considered.

TITANIUM DIOXIDE

In vitro studies

Titanium dioxide (TiO2) is physically and chemically 
stable, non-toxic, and exhibits antibacterial activity.[82] 
TiO2 is effective against E. coli, S. epidermidis, S. pyogenes, 
S.  mutans, and Enterococcus faecalis.[83] TiO2 has 
demonstrated photocatalytic activity, with the release of 
ROS that attacks the bacteria from outside the cell wall.[84] 
TiO2 causes a lipid peroxidation reaction that subsequently 
collapses the cell membrane structure and therefore inhibits 
its functions leading to cell death.[84] TiO2 particles are used 
in dental composites to match the opalescence of natural 
teeth.[85] The addition of TiO2 to composites can improve 
mechanical properties.[86,87] They also demonstrated 
improved compressive strength when incorporated in glass 
ionomer cement (GIC).[88] In another study by Elsaka et 
al.,[89] it was reported that GI-containing 3% (w/w) TiO2 
nanoparticles demonstrated superior mechanical and 
antibacterial properties compared to conventional GI. TiO2 

is used in orthodontic composite as it is antibacterial and 
does not affect the shear bond strength.[90] As titanium 
dioxide incorporated resin composite is found to be 
biocompatible, it can be used as a restorative material.[91] 
TiO2 in the composite resin can decrease S. mutans biofilm 
formation over the composite resin surface.[92] TiO2 
nanoparticles have proved to be effective against cariogenic 
bacteria. They have been demonstrated to improve the 
mechanical properties when added to composite and GIC. 
Thus, a material that can provide antibacterial property 
without reducing the mechanical property can be awaited 
in the future.

CHLORHEXIDINE

In vitro studies

Chlorhexidine (CHX) has broad-spectrum antimicrobial 
activities and is a widely prescribed antiplaque agent.[93,94] 
To overcome the rapid and uncontrolled release of free CHX 
from resin matrices, two methods, namely, encapsulation or 
nanoparticulation, are used. Nano-encapsulated particles 
exhibit rapid penetration and bioavailability with increased 
biological efficacy and decreased potential cytotoxicity.[95] 
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Seneviratne et al. coated CHX on mesoporous silica NPs 
with inner pore channels of approximately 2.5 nm. The 
results demonstrated that CHX NPs had antibacterial 
effects against both planktonic and biofilm bacteria such 
as Aggregatibacter actinomycetemcomitans, E. faecalis, 
Fusobacterium nucleatum, S. mutans, P. gingivalis, and 
S. sobrinus.[96] Barbour et al. developed antimicrobial 
chlorhexidine hexametaphosphate (CHX HMP) 
nanoparticles from CHX and sodium hexametaphosphate at 
ambient temperature and pressure.[97] There was a sustained 
release of CHX for more than 50 days.[97,98] Nanocarriers 
such as spherical poly-lactic-co-glycolic acid,[99] poly 
(ethylene glycol)-block-poly-(L-lactide),[100] nano-silica 
wires, and spheres[101-106] were studied for sustained delivery 
of CHX in the oral environment. A paste containing CHX 
HMP nanoparticles embedded into GIC has been shown 
to release chlorhexidine for at least 14 months.[107] A recent 
study demonstrated that the CHX carrier nanosystem 
based on iron oxide magnetic nanoparticles (IONPs) and 
chitosan was able to reduce biofilm formation of C. albicans 
and S. mutans in single or mixed cultures.[108] CHX-HMP 
nanoparticles aid in achieving CHX rich oral environment 
for a longer duration and at higher concentration compared 
to the conventional solution of CHX digluconate. 
Furthermore, the potential antibacterial effect of CHX 
nanoparticles aids in the treatment of biofilm-related oral 
diseases such as dental caries.

CHITOSAN

In vitro experiments

Chitosan nanoparticles (ChNPs) are manufactured by 
crosslinking methods such as ion gelation with polyanionic 
sodium triphosphate.[109] ChNPs are used in dental restorative 
materials to control oral biofilms.[110] ChNPs incorporated 
dental varnishes demonstrated more potent antimicrobial 
activity than propolis, miwask, or chlorhexidine incorporated 
varnishes against S. mutans.[111] Rutin (a flavonoid from 
plant source with antibacterial activity) loaded into ChNPs 
possessed higher antibacterial activity compared with pure 
rutin or chitosan nanoparticles alone.[112]

Covarrubias et al. demonstrated antimicrobial activity of 
hybrid nanoparticles comprising copper nanoparticles 
with a chitosan shell (CuChNP) against S. mutans. 
CuChNP prevented S. mutans growth on the human tooth 
surface as well as disrupted and killed the bacterial cells 
in an established dental biofilm. Chitosan also interacted 
with tooth hydroxyapatite and bacterial cell wall, which 
improved the adhesion of copper to the tooth surface and 
improved the anti-biofilm activity.[113] In another study, 
chloroaluminum phthalocyanine (ClAlPc) encapsulated in 
chitosan nanoparticles (ChNPs) were found to be effective 
against S. mutans biofilm, encouraging its use in clinical 

studies.[114] ChNPs exhibit good biocompatibility and 
antimicrobial activity against cariogenic bacteria in vitro and 
they can be used as potential anticariogenic agents, though 
further in vivo studies are necessary to establish their clinical 
efficacy.

HYDROXYAPATITE

In vitro experiments

Acids produced by bacterial metabolism result in mineral loss 
from the hard tissue in the early stages of caries attack, but 
the collagen network remains unaffected. HA nanoparticles 
(HA NPs) are used to remineralize this organic scaffold by 
acting either as a direct replacement of lost minerals or as a 
carrier for lost ions.[115] HA NPs have been integrated into 
products for oral care such as dentifrices and mouthwash 
to promote the remineralization of enamel by replacing 
calcium and phosphate ions in the areas from which minerals 
were dissolved, restoring integrity.[116] An in situ study with 
HA NPs incorporated toothpaste showed that HA NPs can 
penetrate tooth porosities and can produce a protective layer 
on the tooth’s surface against a carious attack.[117] HA NPs in 
toothpaste promote enamel regeneration by the formation 
of biomimetic film similar in morphology and structure 
to the biologic hydroxyapatite of enamel. The new layer 
of apatite showed resistance to toothbrushing due to the 
chemical bonds between the synthetic and natural crystals of 
enamel.[118]

Nano-HA paste showed a protective layer with globular 
deposits on artificially produced incipient caries-like 
lesions when compared to fluoride varnish and casein 
phosphopeptide–amorphous calcium phosphate (CPP-
ACP).[119] A similar study showed that both nano-HA and 
CPP-ACP had a remineralizing effect on the early stages 
of caries.[120] Several in vitro studies reported the better 
remineralizing potential of HA NPs when compared to 
toothpaste containing calcium and potassium ions and 
sodium nitrate.[121-127]

HA NPs incorporated pit and fissure sealants demonstrated 
a remineralized region at sealant enamel interface. They also 
showed a higher degree of conversion and increased ion 
release.[128] Incorporation of HA NPs into dental composites 
promoted enamel remineralization at a potentially cariogenic 
pH of 4.[129]

In vivo experiments

An in vivo study showed a decrease in caries incidence by 
56% in children brushing with a 5% HA NP toothpaste for 
3 years.[130] The combination of nano-hydroxyapatite gel and 
ozone therapy was shown to remineralize initial approximal 
enamel and dentine subsurface lesions of posterior teeth. 
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However, the treatment procedures should be continued for 
a long time to achieve nonrestorative treatment of caries.[131] 
Mouthwash containing HA and Zn NPs helped in controlling 
bacterial biofilm formation and there was an accumulation 
of HA aggregates.[132-134] Nano-HA showed positive results 
in remineralization, making it preferable for caries 
prevention. Nano-HA is a relatively new material with good 
physical, chemical, and mechanical properties. However, its 
application in preventive dentistry should be investigated 
further.

CASEIN PHOSPHOPEPTIDE –AMORPHOUS 
CALCIUM PHOSPHATE (CPP-ACP)

In vitro and in vivo studies

CPP–ACP nanocomplexes decreased demineralization and 
enhanced remineralization of enamel by localizing at the 
surface of the tooth, bringing about buffering of the phosphate 
and calcium-free ion activities and maintaining a state of 
super-saturation.[135,136] They form a calcium and phosphate 
reservoir that is bound to plaque and dental surfaces.[137] 

A clinical trial conducted for 24 months demonstrated the 
efficacy of toothpaste containing CPP in preventing carious 
lesions.[138] Several in vitro and in situ studies have shown that 
toothpaste with CPP–ACP nano complexes prevented enamel 
demineralization produced by soft drinks.[139-141] Toothpaste 
containing CPP–ACP NPs with L. rhamnosus (probiotic strain) 
had effective remineralizing and antimicrobial efficiency.[142] 
CPP–ACP and fluoride were suggested to remineralize initial 
dental caries and white spot lesions. However, CPP–ACP had a 
slightly lower potential in the remineralization of early enamel 
caries compared to fluoride.[120,143-145] Studies supporting the 
clinical efficacy of CPP-ACP are limited and inconsistent. 
CPP-ACP nanocomplexes cannot be used as a substitute for 
fluoride or when other caries preventive interventions such as 
sealants and resin infiltration are available.

BIOACTIVE GLASS

In vitro studies

Bioactive glass nanoparticles (BAG NP) exhibited better 
remineralization potential when compared to conventional 
BAG due to increased surface area and higher Ca/P ratios, 
thus slowing the progress of dental caries.[146-148] When BAG 
NPs comes in contact with an aqueous solution, they will take 
a mesoporous shape, which allows the formation of apatite on 
the dentine surface. The pH rise provokes the precipitation of 
HA. Phosphate and calcium ions in the bioactive glass and 
minerals from saliva activate the mineralizing process.[149]

In vitro studies have demonstrated that BAG NPs could make 
dentin more acid-resistant by inducing mineral formation 
on dentin surfaces.[150,151] The new HA layer formed is similar 

to those of enamel or dentine and presents better resistance 
to abrasion.[152] The fluoride-containing bioactive glass had 
a better capacity for remineralization compared to BAG 
toothpaste and sodium monofluorophosphate toothpaste.[153]

BAG NPs toothpaste also demonstrated antibacterial 
properties.[154] BAG NPs can inhibit S. mutans biofilm.[155] 
BAG NPs can create an unfavorable environment for bacterial 
growth by the release of alkaline ions that cause an elevation 
in the pH. The addition of fluoride to BAG provided higher 
resistance to acid dissolution, allowing the formation of 
fluorapatite on the tooth surface.[156] This deposit of fluorapatite 
on the dentine surface occluded dentinal tubules and 
decreased permeability.[157] The main mechanisms of action of 
BAG NPs for caries management include antibacterial effect 
against cariogenic bacteria, inhibition of demineralization, and 
promotion of remineralization. Further research should be 
done to find the exact mechanism of action of bioactive glass 
in preventing dental caries in an intraoral environment.

CONCLUSION

Nanotechnology is relatively new and has promising potential 
in the development of new nanoparticles that can be used in 
the prevention of dental caries. Right now, oral care products 
such as toothpaste and mouth rinses contain NPs with anti-
microbial, anti-inflammatory, and remineralizing properties. 
Although many NPs are used in dental restorative materials to 
prevent caries that are more effective than traditional materials 
only few which are extensively researched are highlighted in this 
review. Nanodentistry will be cost-effective, time-saving, and 
prevent the patients from future complex dental procedures. 
Although there are various reports with positive results in favor 
of nanoparticles, the clinical application of these techniques 
for caries prevention is limited. Further studies on dosage, 
viability, steps to overcome toxicity, and the performance of 
nanoparticles in the oral environment are necessary.
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